cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209523 Number of nX4 0..7 arrays with every 2X2 subblock containing exactly one value repeat, and new values 0..7 introduced in row major order.

This page as a plain text file.
%I A209523 #7 Jul 22 2025 21:47:51
%S A209523 15,700,107693,27323948,9700576474,4194606038254,2002617518101082,
%T A209523 999998646599976052,509185650061380676984,261448697342101358568952,
%U A209523 134726519599100535344614118,69532388907494477391456512054
%N A209523 Number of nX4 0..7 arrays with every 2X2 subblock containing exactly one value repeat, and new values 0..7 introduced in row major order.
%C A209523 Column 4 of A209527
%H A209523 R. H. Hardin, <a href="/A209523/b209523.txt">Table of n, a(n) for n = 1..210</a>
%F A209523 Empirical: a(n) = 741*a(n-1) -80239*a(n-2) -27206821*a(n-3) +4305035452*a(n-4) +223990610212*a(n-5) -54620780269672*a(n-6) +80102456008496*a(n-7) +269012192646842580*a(n-8) -5707166224378420708*a(n-9) -614361714034268393448*a(n-10) +20349127506784034500304*a(n-11) +678382194937846639652480*a(n-12) -31846630475071645146740528*a(n-13) -302516138167984951194348896*a(n-14) +26095927856414661783174115840*a(n-15) -42282326119900772602090488064*a(n-16) -11829904605301568248908018568000*a(n-17) +95434060058346872198828125007744*a(n-18) +3049598030451163236051411209616896*a(n-19) -40328192983623784101590586927442944*a(n-20) -439535105889627937805745674742651136*a(n-21) +8800995724627097037828678826851591680*a(n-22) +29877440033653195430840885415475181568*a(n-23) -1153471451160086939353282980879345710080*a(n-24) +361417465904520256348084988960166447104*a(n-25) +96388134984267610666941969352759061807104*a(n-26) -237433518884853914547549341361474933817344*a(n-27) -5316540495638084469441833849843792059400192*a(n-28) +20393494451129478050239694172720827330625536*a(n-29) +199181629390484462577756831982634501905514496*a(n-30) -943607730208397458178494653466136607616663552*a(n-31) -5231256737767831422266603443721419521122631680*a(n-32) +27394524698903915462065541938127887707381170176*a(n-33) +99803868178309860951994852593262049142125887488*a(n-34) -524113006115435854526959526490815473303230087168*a(n-35) -1425032472189917422814910850409521554940678373376*a(n-36) +6686272751430261305221763448226565325352171732992*a(n-37) +15273084369730432523206297036506635896548728242176*a(n-38) -56091093092375144843369119047605323562566155239424*a(n-39) -118040785197556405677917396892327617921876131577856*a(n-40) +298630920918555211168409478061760437589237135572992*a(n-41) +608824256895510126291165994808739474478152800010240*a(n-42) -962534419711355112597884657611613718482518636756992*a(n-43) -1905011080779867767627757598039656592066040429543424*a(n-44) +1823172121497981180819938155626702329391913793224704*a(n-45) +3277374088192893278994603970667689592637714126077952*a(n-46) -2092753233712097492555446237792429997925054491394048*a(n-47) -2790425203670748510069753611132555534785277570580480*a(n-48) +1448099586316124905615364077335799871278771548979200*a(n-49) +912421745734027603434708150458948967598456307712000*a(n-50) -462466146321083955411362178920173757818680115200000*a(n-51) for n>52
%e A209523 Some solutions for n=5
%e A209523 ..0..0..0..1....0..1..0..0....0..0..0..0....0..0..0..0....0..0..0..0
%e A209523 ..1..2..1..2....2..0..2..3....1..2..3..1....1..2..1..2....1..2..1..2
%e A209523 ..0..0..0..0....2..1..1..1....2..0..2..1....0..0..1..0....3..1..4..4
%e A209523 ..2..1..2..1....0..0..2..0....0..1..2..0....1..2..1..2....5..1..6..7
%e A209523 ..2..0..0..0....2..3..0..1....0..2..0..1....0..0..2..3....2..1..5..5
%K A209523 nonn
%O A209523 1,1
%A A209523 _R. H. Hardin_ Mar 10 2012