This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209536 #21 Jun 09 2021 05:24:30 %S A209536 1,5,14,39,88,209,434,918,1818,3582,6718,12647,22848,41073,72049, %T A209536 125410,213619,361844,601944,995073,1622337,2626341,4201366,6681991, %U A209536 10515755,16449851,25509951,39333475,60172700,91577516,138390480,208096281,310976730,462512830 %N A209536 Number of partitions of 0 having positive part-sum <= n. %C A209536 A partition of 0 is a set {i(1), i(2),..., i(n)} of nonzero integers with sum 0. Such a set uniquely partitions into two multisets {x(1),..., x(j)} and {y(1),..., y(k)} where x(1)+x(2)+...+x(j) =-[y(1)+y(2)+...+y(k)] and x(i) > 0 and y(i) < 0 for every i. The number x(1)+x(2)+...+x(j) is the positive part-sum. %C A209536 Let p(h) be the number of partitions of h>=1, as in A000041. There are p(h)^2 ways to choose each of the sets {x(1),...,x(j)} and {y(1),...,y(k)} having sum h. Consequently, there are p(1)^2+p(2)^2+...+p(n)^2 partitions of 0 having positive part-sum <= n. %H A209536 Alois P. Heinz, <a href="/A209536/b209536.txt">Table of n, a(n) for n = 1..5000</a> %F A209536 From _Alois P. Heinz_, Oct 21 2018: (Start) %F A209536 a(n) = Sum_{j=1..n} A000041(j)^2. %F A209536 a(n) = -1 + A259399(n). (End) %e A209536 0 = 1-1 = 2-2 = 2-(1+1) = (1+1)-2 = (1+1)-(1+1), %e A209536 so that a(2) = 5. %p A209536 a:= proc(n) option remember; `if`(n=0, 0, %p A209536 combinat[numbpart](n)^2+a(n-1)) %p A209536 end: %p A209536 seq(a(n), n=1..40); # _Alois P. Heinz_, Oct 21 2018 %t A209536 p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; %t A209536 s[n_] := Sum[l[k]^2, {k, 1, n}]; %t A209536 Table[s[n], {n, 1, 40}] (* A209536 *) %t A209536 (* Second program: *) %t A209536 a[n_] := a[n] = If[n == 0, 0, PartitionsP[n]^2 + a[n-1]]; %t A209536 Array[a, 40] (* _Jean-François Alcover_, Jun 09 2021, after _Alois P. Heinz_ *) %Y A209536 Cf. A209535, A000041, A259399. %K A209536 nonn %O A209536 1,2 %A A209536 _Clark Kimberling_, Mar 10 2012