A209556 Triangle of coefficients of polynomials v(n,x) jointly generated with A209555; see the Formula section.
1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 8, 7, 5, 1, 4, 9, 17, 11, 6, 1, 4, 15, 22, 31, 16, 7, 1, 5, 16, 43, 46, 51, 22, 8, 1, 5, 24, 50, 102, 86, 78, 29, 9, 1, 6, 25, 86, 130, 212, 148, 113, 37, 10, 1, 6, 35, 95, 250, 296, 400, 239, 157, 46, 11, 1, 7, 36, 150, 295, 626, 610
Offset: 1
Examples
First five rows: 1 2...1 2...3...1 3...4...4...1 3...8...7...5...1 First three polynomials v(n,x): 1, 2 + x , 2+ 3x + x^2 .
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209555 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209556 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments