This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209557 #5 Mar 30 2012 18:58:15 %S A209557 1,1,1,2,3,1,2,7,7,1,3,9,18,15,1,3,16,30,41,31,1,4,18,60,87,88,63,1,4, %T A209557 28,78,189,232,183,127,1,5,30,136,285,535,585,374,255,1,5,43,160,541, %U A209557 931,1410,1418,757,511,1,6,45,255,705,1886,2808,3534,3339,1524 %N A209557 Triangle of coefficients of polynomials u(n,x) jointly generated with A209558; see the Formula section. %C A209557 For a discussion and guide to related arrays, see A208510. %F A209557 u(n,x)=x*u(n-1,x)+v(n-1,x), %F A209557 v(n,x)=u(n-1,x)+2x*v(n-1,x) +1, %F A209557 where u(1,x)=1, v(1,x)=1. %e A209557 First five rows: %e A209557 1 %e A209557 1...1 %e A209557 2...3...1 %e A209557 2...7...7....1 %e A209557 3...9...18...15...1 %e A209557 First three polynomials v(n,x): 1, 1 + x, 2 + 3x + x^2. %t A209557 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209557 u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; %t A209557 v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1; %t A209557 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209557 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209557 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209557 TableForm[cu] %t A209557 Flatten[%] (* A209557 *) %t A209557 Table[Expand[v[n, x]], {n, 1, z}] %t A209557 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209557 TableForm[cv] %t A209557 Flatten[%] (* A209558 *) %Y A209557 Cf. A209558, A208510. %K A209557 nonn,tabl %O A209557 1,4 %A A209557 _Clark Kimberling_, Mar 10 2012