A209559 Triangle of coefficients of polynomials u(n,x) jointly generated with A209560; see the Formula section.
1, 1, 1, 3, 2, 1, 5, 8, 3, 1, 9, 17, 15, 4, 1, 15, 38, 39, 24, 5, 1, 25, 76, 104, 74, 35, 6, 1, 41, 149, 242, 229, 125, 48, 7, 1, 67, 282, 543, 607, 440, 195, 63, 8, 1, 109, 524, 1159, 1531, 1308, 769, 287, 80, 9, 1, 177, 957, 2401, 3631, 3660, 2533, 1253, 404
Offset: 1
Examples
First five rows: 1 1...1 3...2....1 5...8....3....1 9...17...15...4...1 First three polynomials v(n,x): 1, 1 + x, 3 + 2x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209559 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209560 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x) +1,
where u(1,x)=1, v(1,x)=1.
Comments