This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209561 #13 Jun 24 2024 22:27:41 %S A209561 1,1,1,2,2,1,3,4,3,1,4,7,7,4,1,5,11,14,11,5,1,6,16,25,25,16,6,1,7,22, %T A209561 41,50,41,22,7,1,8,29,63,91,91,63,29,8,1,9,37,92,154,182,154,92,37,9, %U A209561 1,10,46,129,246,336,336,246,129,46,10,1,11,56,175,375,582,672 %N A209561 Triangle of coefficients of polynomials u(n,x) jointly generated with A209562; see the Formula section. %C A209561 Alternating row sums: 1,0,1,1,1,1,1,1,1,1,1,1,1,1,... %C A209561 For a discussion and guide to related arrays, see A208510. %H A209561 Reinhard Zumkeller, <a href="/A209561/b209561.txt">Rows n = 1..120 of triangle, flattened</a> %F A209561 u(n,x)=x*u(n-1,x)+v(n-1,x), %F A209561 v(n,x)=x*u(n-1,x)+v(n-1,x) +1, %F A209561 where u(1,x)=1, v(1,x)=1. %F A209561 T(n,n) = 1; T(n,k) = A051597(n-2,k-1), 1 <= k < n. - _Reinhard Zumkeller_, Dec 26 2012 %e A209561 First five rows: %e A209561 1 %e A209561 1...1 %e A209561 2...2...1 %e A209561 3...4...3...1 %e A209561 4...7...7...4...1 %e A209561 First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2. %t A209561 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209561 u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; %t A209561 v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; %t A209561 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209561 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209561 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209561 TableForm[cu] %t A209561 Flatten[%] (* A209561 *) %t A209561 Table[Expand[v[n, x]], {n, 1, z}] %t A209561 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209561 TableForm[cv] %t A209561 Flatten[%] (* A209562 *) %o A209561 (Haskell) %o A209561 a209561 n k = a209561_tabl !! (n-1) !! (k-1) %o A209561 a209561_row n = a209561_tabl !! (n-1) %o A209561 a209561_tabl = [1] : iterate %o A209561 (\row -> zipWith (+) ([1] ++ row) (row ++ [0])) [1,1] %o A209561 -- _Reinhard Zumkeller_, Dec 26 2012 %Y A209561 Cf. A209562, A208510. %Y A209561 Cf. A083329 (row sums), A097613 (central terms). %K A209561 nonn,tabl %O A209561 1,4 %A A209561 _Clark Kimberling_, Mar 10 2012