A209566 Triangle of coefficients of polynomials v(n,x) jointly generated with A209565; see the Formula section.
1, 1, 3, 1, 3, 7, 1, 3, 10, 15, 1, 3, 10, 31, 31, 1, 3, 10, 34, 88, 63, 1, 3, 10, 34, 113, 233, 127, 1, 3, 10, 34, 116, 359, 586, 255, 1, 3, 10, 34, 116, 393, 1084, 1419, 511, 1, 3, 10, 34, 116, 396, 1306, 3120, 3340, 1023, 1, 3, 10, 34, 116, 396, 1349, 4216
Offset: 1
Examples
First five rows: 1 1...1 1...4...1 1...4...11...1 1...4...14...26...1 First three polynomials v(n,x): 1, 1 + x , 1 + 4x + x^2 .
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209565 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209566 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=x*u(n-1,x)+2x*v(n-1,x) +1,
where u(1,x)=1, v(1,x)=1.
Comments