This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209567 #5 Mar 30 2012 18:58:15 %S A209567 1,1,1,2,3,1,3,7,6,1,4,13,18,10,1,5,21,41,39,15,1,6,31,79,108,75,21,1, %T A209567 7,43,136,245,250,132,28,1,8,57,216,486,661,524,217,36,1,9,73,323,875, %U A209567 1497,1601,1015,338,45,1,10,91,461,1464,3031,4109,3556,1844 %N A209567 Triangle of coefficients of polynomials u(n,x) jointly generated with A209568; see the Formula section. %C A209567 For n>1, row n begins with n and ends with 1. %C A209567 For n>1, penultimate number in row n is (n-1)st triangular number. %C A209567 Alternating row sums: 1,0,0,1,0,0,1,0,0,1,0,0,... %C A209567 For a discussion and guide to related arrays, see A208510. %F A209567 u(n,x)=x*u(n-1,x)+v(n-1,x), %F A209567 v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1, %F A209567 where u(1,x)=1, v(1,x)=1. %e A209567 First five rows: %e A209567 1 %e A209567 1...1 %e A209567 2...3....1 %e A209567 3...7....6....1 %e A209567 4...13...18...10...1 %e A209567 First three polynomials v(n,x): 1, 1 + x, 2 + 3x + x^2. %t A209567 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209567 u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; %t A209567 v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A209567 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209567 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209567 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209567 TableForm[cu] %t A209567 Flatten[%] (* A209567 *) %t A209567 Table[Expand[v[n, x]], {n, 1, z}] %t A209567 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209567 TableForm[cv] %t A209567 Flatten[%] (* A209568 *) %Y A209567 Cf. A209568, A208510. %K A209567 nonn,tabl %O A209567 1,4 %A A209567 _Clark Kimberling_, Mar 10 2012