cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209571 Triangle of coefficients of polynomials u(n,x) jointly generated with A209572; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 4, 9, 1, 1, 4, 15, 16, 1, 1, 4, 15, 44, 25, 1, 1, 4, 15, 56, 105, 36, 1, 1, 4, 15, 56, 185, 216, 49, 1, 1, 4, 15, 56, 209, 524, 399, 64, 1, 1, 4, 15, 56, 209, 732, 1295, 680, 81, 1, 1, 4, 15, 56, 209, 780, 2303, 2864, 1089, 100, 1, 1, 4, 15, 56
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2012

Keywords

Comments

Penultimate number in row n is (n-1)^2, for n>1.
Combinatorial limit of row n satisfies linear recurrence
r(n)=4*r(n-1)-r(n-2) with r(1)=1 and r(2)=4. For a
discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...1
1...4....1
1...4....9....1
1...4....15...16...1
First three polynomials v(n,x): 1, 1 + x, 1 + 4x + x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A209571 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A209572 *)

Formula

u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.