A209572 Triangle of coefficients of polynomials v(n,x) jointly generated with A209571; see the Formula section.
1, 1, 3, 1, 3, 5, 1, 3, 11, 7, 1, 3, 11, 29, 9, 1, 3, 11, 41, 61, 11, 1, 3, 11, 41, 129, 111, 13, 1, 3, 11, 41, 153, 339, 183, 15, 1, 3, 11, 41, 153, 523, 771, 281, 17, 1, 3, 11, 41, 153, 571, 1571, 1569, 409, 19, 1, 3, 11, 41, 153, 571, 2035, 4161, 2929, 571, 21
Offset: 1
Examples
First five rows: 1 1...3 1...3...5 1...3...11...7 1...3...11...29...9 First three polynomials v(n,x): 1, 1 + 3x , 1 + 3x + 5x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209571 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209572 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x) +1,
where u(1,x)=1, v(1,x)=1.
Comments