This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209577 #11 Jun 23 2018 02:33:15 %S A209577 1,1,1,3,2,1,5,6,3,1,9,13,10,4,1,15,28,26,15,5,1,25,56,64,45,21,6,1, %T A209577 41,109,146,124,71,28,7,1,67,206,319,315,216,105,36,8,1,109,382,671, %U A209577 758,602,349,148,45,9,1,177,697,1372,1744,1576,1056,533,201,55,10 %N A209577 Triangle of coefficients of polynomials u(n,x) jointly generated with A209578; see the Formula section. %C A209577 For a discussion and guide to related arrays, see A208510. %F A209577 u(n,x) = x*u(n-1,x) + v(n-1,x), %F A209577 v(n,x) = (x+1)*u(n-1,x) + v(n-1,x) + 1, %F A209577 where u(1,x)=1, v(1,x)=1. %F A209577 The coefficients in the triangle seem to be T(n,m) = sum(k=0,n-m,2 * binomial(m+k, m)*binomial(k, n-k-m) - sum(i=0, n-m-k, binomial(m+k-1,k)*binomial(k,n-m-i-k))) by using the PARI syntax. - _Thomas Baruchel_, Jun 03 2018 %e A209577 First five rows: %e A209577 1; %e A209577 1, 1; %e A209577 3, 2, 1; %e A209577 5, 6, 3, 1; %e A209577 9, 13, 10, 4, 1; %e A209577 First three polynomials v(n,x): 1, 1 + x, 3 + 2x + x^2. %t A209577 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209577 u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; %t A209577 v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; %t A209577 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209577 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209577 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209577 TableForm[cu] %t A209577 Flatten[%] (* A209577 *) %t A209577 Table[Expand[v[n, x]], {n, 1, z}] %t A209577 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209577 TableForm[cv] %t A209577 Flatten[%] (* A209578 *) %Y A209577 Cf. A209578, A208510. %K A209577 nonn,tabl %O A209577 1,4 %A A209577 _Clark Kimberling_, Mar 11 2012