A209579 Triangle of coefficients of polynomials u(n,x) jointly generated with A209580; see the Formula section.
1, 1, 1, 2, 3, 1, 2, 6, 6, 1, 3, 9, 14, 10, 1, 3, 14, 28, 29, 15, 1, 4, 18, 48, 71, 55, 21, 1, 4, 25, 75, 139, 158, 97, 28, 1, 5, 30, 112, 251, 356, 321, 161, 36, 1, 5, 39, 156, 413, 724, 828, 609, 254, 45, 1, 6, 45, 215, 645, 1321, 1874, 1782, 1094, 384, 55, 1, 6
Offset: 1
Examples
First five rows: 1 1...1 2...3....1 2...6....6....1 3...9....14...10...1 First three polynomials v(n,x): 1, 1 + x, 2 + 3x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209579 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209580 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments