A209580 Triangle of coefficients of polynomials v(n,x) jointly generated with A209579; see the Formula section.
1, 2, 2, 2, 4, 3, 3, 7, 8, 4, 3, 11, 19, 15, 5, 4, 15, 34, 43, 26, 6, 4, 21, 57, 91, 87, 42, 7, 5, 26, 87, 176, 217, 163, 64, 8, 5, 34, 126, 301, 473, 472, 288, 93, 9, 6, 40, 176, 489, 908, 1150, 954, 485, 130, 10, 6, 50, 235, 745, 1626, 2460, 2587, 1817, 784
Offset: 1
Examples
First five rows: 1 2...2 2...4....3 3...7....8....4 3...11...19...15...1 First three polynomials v(n,x): 1, 2 + 2x , 2 + 4x + 3x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209579 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209580 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments