cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209593 T(n,k)=Number of n X n 0..k arrays with every element equal to a diagonal or antidiagonal reflection.

Original entry on oeis.org

2, 3, 16, 4, 81, 192, 5, 256, 3645, 9216, 6, 625, 28672, 1476225, 663552, 7, 1296, 140625, 51380224, 996451875, 191102976, 8, 2401, 513216, 791015625, 161128382464, 6053445140625, 82556485632, 9, 4096, 1529437, 7316407296
Offset: 1

Views

Author

R. H. Hardin Mar 10 2012

Keywords

Comments

Table starts
......2.........3............4.............5...............6................7
.....16........81..........256...........625............1296.............2401
....192......3645........28672........140625..........513216..........1529437
...9216...1476225.....51380224.....791015625......7316407296......47738317081
.663552.996451875.161128382464.8009033203125.191221621088256.2767247026234327

Examples

			Some solutions for n=3 k=3
..2..0..1....1..0..1....0..0..3....0..2..1....1..2..3....0..1..2....2..2..0
..3..1..0....0..1..0....2..1..0....2..3..2....2..3..0....1..3..2....1..0..2
..0..3..3....1..0..1....1..2..3....3..2..3....2..0..2....2..2..2....1..1..3
		

Crossrefs

Row 2 is A000583(n+1)

Formula

T(n,k) = (k+1) ^ (2n-(n modulo 2)) * ((k+1)*(2k+1)) ^ ((n*n-2n+(n modulo 2))/4)