cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209594 Number of 3 X 3 0..n arrays with every element equal to a diagonal or antidiagonal reflection.

Original entry on oeis.org

192, 3645, 28672, 140625, 513216, 1529437, 3932160, 9034497, 19000000, 37202781, 68677632, 120670225, 203297472, 330328125, 520093696, 796539777, 1190427840, 1740697597, 2496000000, 3516410961, 4875335872, 6661615005, 8981839872
Offset: 1

Views

Author

R. H. Hardin, Mar 10 2012

Keywords

Comments

Row 3 of A209593.

Examples

			Some solutions for n=3:
..2..1..2....3..3..2....0..2..0....1..2..3....1..2..1....2..2..1....0..3..1
..1..3..2....3..1..1....2..2..0....2..3..1....0..2..2....2..3..0....2..1..3
..3..2..0....2..1..3....0..0..3....2..1..0....2..0..2....0..0..0....2..2..3
		

Crossrefs

Cf. A209593.

Programs

  • PARI
    a(n) = (2*n+1)*(n+1)^6; \\ Altug Alkan, Jul 11 2018

Formula

a(n) = (n+1) ^ 6 * (2*n+1).
From Colin Barker, Jul 11 2018: (Start)
G.f.: x*(192 + 2109*x + 4888*x^2 + 2557*x^3 + 352*x^4 - 25*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)