cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209614 G.f.: Sum_{n>=1} Fibonacci(n^3)*x^(n^3).

This page as a plain text file.
%I A209614 #6 Apr 07 2012 22:51:00
%S A209614 1,0,0,0,0,0,0,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,196418,0,0,0,0,
%T A209614 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%U A209614 10610209857723,0,0,0,0,0,0,0,0,0,0
%N A209614 G.f.: Sum_{n>=1} Fibonacci(n^3)*x^(n^3).
%C A209614 Compare g.f. to the Lambert series identity: Sum_{n>=1} A210826(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^3), where A210826(n) = kronecker(-3,d(n)) and d(n) is the number of divisors of n.
%F A209614 G.f.: Sum_{n>=1} A210826(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Fibonacci(n^3)*x^(n^3).
%e A209614 G.f.: A(x) = x + 21*x^8 + 196418*x^27 + 10610209857723*x^64 + 59425114757512643212875125*x^125 +...
%e A209614 where A(x) = x/(1-x-x^2) + (-1)*1*x^2/(1-3*x^2+x^4) + (-1)*2*x^3/(1-4*x^3-x^6) + (0)*3*x^4/(1-7*x^4+x^8) + (-1)*5*x^5/(1-11*x^5-x^10) + (+1)*8*x^6/(1-18*x^6+x^12)+ (-1)*13*x^7/(1-29*x^7-x^14) + (+1)*21*x^8/(1-47*x^8+x^16) + (0)*34*x^9/(1-76*x^9-x^18) + (+1)*55*x^10/(1-123*x^10+x^20)+ (-1)*89*x^11/(1-199*x^11-x^22) +...+ A210826(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
%e A209614 The sequence A210826(n) = kronecker(-3, d(n)) begins:
%e A209614 [1,-1,-1,0,-1,1,-1,1,0,1,-1,0,-1,1,1,-1,-1,0,-1,0,1,1,-1,-1,0,1,1,...].
%o A209614 (PARI) {A210826(n)=if(n==0,0,kronecker(-3,numdiv(n)))}
%o A209614 {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
%o A209614 {a(n)=polcoeff(sum(m=1, n, A210826(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
%o A209614 for(n=1,125,print1(a(n),", "))
%Y A209614 Cf. A210826, A204060.
%K A209614 nonn
%O A209614 1,8
%A A209614 _Paul D. Hanna_, Apr 07 2012