cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209616 Sum of positive Dyson's ranks of all partitions of n.

This page as a plain text file.
%I A209616 #53 Jul 06 2025 08:55:10
%S A209616 0,1,2,4,7,12,18,29,42,63,89,128,176,246,333,453,603,807,1058,1393,
%T A209616 1807,2346,3011,3867,4915,6248,7879,9926,12421,15529,19297,23954,
%U A209616 29585,36486,44802,54937,67096,81831,99459,120700,146026,176410,212512,255636,306734
%N A209616 Sum of positive Dyson's ranks of all partitions of n.
%C A209616 The Dyson's rank of a partition is the largest part minus the number of parts.
%H A209616 Seiichi Manyama, <a href="/A209616/b209616.txt">Table of n, a(n) for n = 1..10000</a>
%H A209616 G. E. Andrews, S. H. G. Chan, and B. Kim, <a href="http://www.math.psu.edu/andrews/pdf/292.pdf">The odd moments of ranks and cranks</a> (See the function R_1), Journal of Combinatorial Theory, Series A, Volume 120, Issue 1, January 2013, Pages 77-91.
%H A209616 F. J. Dyson, <a href="https://archim.org.uk/eureka/archive/Eureka-8.pdf">Some guesses in the theory of partitions</a>, Eureka (Cambridge) 8 (1944), 10-15.
%H A209616 Frank Garvan, <a href="http://www.combinatorics.net/conf/A75/Slides/02_03_Garvan.pdf">Dyson's rank function and Andrews's SPT-function</a>
%F A209616 a(n) = A115995(n) - A195012(n). - _Omar E. Pol_, Apr 06 2012
%F A209616 G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+1)/2) / (1-x^k). - _Seiichi Manyama_, May 21 2023
%F A209616 a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (Pi*2^(3/2)*sqrt(n)). - _Vaclav Kotesovec_, Jul 06 2025
%e A209616 For n = 5 we have:
%e A209616 --------------------------
%e A209616 Partitions        Dyson's
%e A209616 of 5               rank
%e A209616 --------------------------
%e A209616 5               5 - 1 =  4
%e A209616 4+1             4 - 2 =  2
%e A209616 3+2             3 - 2 =  1
%e A209616 3+1+1           3 - 3 =  0
%e A209616 2+2+1           2 - 3 = -1
%e A209616 2+1+1+1         2 - 4 = -2
%e A209616 1+1+1+1+1       1 - 5 = -4
%e A209616 --------------------------
%e A209616 The sum of positive Dyson's ranks of all partitions of 5 is 4+2+1 = 7 so a(5) = 7.
%p A209616 # Maple program based on Theorem 1 of Andrews-Chan-Kim:
%p A209616 M:=101;
%p A209616 qinf:=mul(1-q^i,i=1..M);
%p A209616 qinf:=series(qinf,q,M);
%p A209616 R1:=add((-1)^(n+1)*q^(n*(3*n+1)/2)/(1-q^n),n=1..M);
%p A209616 R1:=series(R1/qinf,q,M);
%p A209616 seriestolist(%); # _N. J. A. Sloane_, Sep 04 2012
%t A209616 M = 101;
%t A209616 qinf = Product[1-q^i, {i, 1, M}];
%t A209616 qinf = Series[qinf, {q, 0, M}];
%t A209616 R1 = Sum[(-1)^(n+1) q^(n(3n+1)/2)/(1-q^n), {n, 1, M}];
%t A209616 R1 = Series[R1/qinf, {q, 0, M}];
%t A209616 CoefficientList[R1, q] // Rest (* _Jean-François Alcover_, Aug 18 2018, translated from Maple *)
%o A209616 (PARI) my(N=50, x='x+O('x^N)); concat(0, Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k+1)/2)/(1-x^k)))) \\ _Seiichi Manyama_, May 21 2023
%Y A209616 Column 1 of triangle A208482.
%Y A209616 Cf. A063995, A064174, A092269, A105805, A194547, A194549, A195822, A208478.
%K A209616 nonn
%O A209616 1,3
%A A209616 _Omar E. Pol_, Mar 10 2012
%E A209616 More terms from _Alois P. Heinz_, Mar 10 2012