cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A210638 Iterated Rényi numbers. Square array A(n,k), n>=0, k>=0, read by antidiagonals, A(n,k) = exponential transform applied n times to the constant function -1, evaluated at k.

Original entry on oeis.org

-1, 1, -1, 1, -1, -1, 1, -1, 0, -1, 1, -1, 1, 1, -1, 1, -1, 2, 0, 1, -1, 1, -1, 3, -4, -2, -2, -1, 1, -1, 4, -11, 8, 2, -9, -1, 1, -1, 5, -21, 49, -14, 9, -9, -1, 1, -1, 6, -34, 139, -255, 13, -24, 50, -1, 1, -1, 7, -50, 296, -1106, 1508, 45, -80, 267, -1, 1
Offset: 0

Views

Author

Peter Luschny, Mar 26 2012

Keywords

Comments

Motivation: The exponential transform applied n times to the constant function 1 evaluated at k was studied by E. T. Bell (Iterated Bell numbers, see A144150).

Examples

			n\k [0]  [1] [2]   [3]   [4]     [5]     [6]
[0] -1   -1  -1    -1    -1      -1      -1
[1]  1   -1   0     1     1      -2      -9  [A000587]
[2]  1   -1   1     0    -2       2       9
[3]  1   -1   2    -4     8     -14      13
[4]  1   -1   3   -11    49    -255    1508
[5]  1   -1   4   -21   139   -1106   10244
[6]  1   -1   5   -34   296   -3132   38916
column3(n) = (-2+7*n-3*n^2)/2  [A115067]
column4(n) = (-2+21*n-23*n^2+6*n^3)/2
column5(n) = (-6+199*n-405*n^2+245*n^3-45*n^4)/6
column6(n) = (-24+2866*n-9213*n^2+9470*n^3-3855*n^4+540*n^5 )/24
		

References

  • R. E. Beard, On the coefficients in the expansion of e^e^t and e^e^(-t), J. Inst. Actuar. 76 (1950), 152-163.
  • Alfréd Rényi, New methods and results in combinatorial analysis. (Paper is in Hungarian.) I. MTA III Oszt. Ivozl., 16 (1966), 77-105.

Crossrefs

Programs

  • Maple
    exptr := proc(p) local g; g := proc(n) option remember; local k;
    `if`(n=0, 1, add(binomial(n-1, k-1)*p(k)*g(n-k), k=1..n)) end end:
    A210638 := (n, k) -> (exptr@@n)(-1)(k):
    seq(lprint(seq(A210638(n, k), k=0..6)), n=0..6);
  • Mathematica
    exptr[p_] := Module[{g}, g[n_] := g[n] = If[n==0, 1, Sum[Binomial[n-1, k-1] p[k] g[n-k], {k, 1, n}]]; g];
    A[n_, k_] := Nest[exptr, -1&, n][k];
    Table[A[n-k, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 29 2019 *)
Showing 1-1 of 1 results.