This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209633 #35 Feb 13 2017 14:21:00 %S A209633 1,2,7,15,33,59,111,182,307,481,757,1134,1713,2483,3611,5117,7238, %T A209633 10029,13888,18900,25682,34442,46057,60934,80428,105159,137137,177495, %U A209633 229069,293694,375582,477499,605526,764060,961603,1204898,1506142,1875150,2329185,2882939 %N A209633 Number of ordered set partitions of the multiset [a,a,1,1,...,1] with two "a" and n "1". %C A209633 For [a,1,1,...1] one gets A093694, number of one-element transitions from the partitions of n to the partitions of n+1 for labeled parts. %H A209633 Alois P. Heinz, <a href="/A209633/b209633.txt">Table of n, a(n) for n = 0..1000</a> %H A209633 Thomas Wieder, <a href="/A209633/a209633.pdf">Multiselection (2nd approach)</a> %e A209633 For n=4 we have the multiset [a,a,1,1,1,1] with the following a(4) = 33 ordered set partitions: %e A209633 For [4] one gets [[1,1,1,1]], [[1,1,1,a]], [[1,1,a,a]]. %e A209633 For [3,1] one gets [[1,1,1],[1]], [[1,1,1],[a]], [[1,1,a],[1]], [[1,1,a],[a]], [[1,a,a],[1]]. %e A209633 For [2,2] one gets [[1,1],[1,1]], [[1,1],[1,a]], [[1,1],[a,a]], [[1,a],[1,1]], [[1,a],[1,a]], [[a,a],[1,1]]. %e A209633 For [2,1,1] one gets [[1,1],[1],[1]], [[1,1],[1],[a]], [[1,1],[a],[1]], [[1,1],[a],[a]], [[1,a],[1],[1]], [[1,a],[1],[a]], [[1,a],[a],[1]], [[a,a],[1],[1]]. %e A209633 For [1,1,1,1] one gets [[1],[1],[1],[1]], [[1],[1],[1],[a]], [[1],[1],[a],[1]], [[1],[1],[a],[a]], [[1],[a],[1],[1]], [[1],[a],[1],[a]], [[1],[a],[a],[1]], [[a],[1],[1],[1]], [[a],[1],[1],[a]], [[a],[1],[a],[1]], [[a],[a],[1],[1]]. %p A209633 p:= (f, g)-> zip((x, y)-> x+y, f, g, 0): %p A209633 b:= proc(n,i) option remember; local f, g; %p A209633 if n=0 then [1, 0, [1]] %p A209633 elif i<1 then [0, 0, [0]] %p A209633 else f:= b(n, i-1); g:= `if`(i>n, [0, 0, [0]], b(n-i, i)); %p A209633 [f[1]+g[1], f[2]+g[2] +`if`(i>1, g[1], 0), p(f[3], [0, g[3][]])] %p A209633 fi %p A209633 end: %p A209633 a:= proc(n) local l, ll; %p A209633 if n=0 then return 1 fi; %p A209633 l:= b(n, n); ll:= l[3]; %p A209633 l[2] +add(ll[t+1] *(1+t* (1+(t-1)/2)), t=1..nops(ll)-1) %p A209633 end: %p A209633 seq(a(n), n=0..50); # _Alois P. Heinz_, Mar 11 2012 %t A209633 zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0, {1}}, i<1, {0, 0, {0}}, True, f = b[n, i-1]; g = If[i>n, {0, 0, {0}}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + If[i>1, g[[1]], 0], zip[f[[3]], Join[{0}, g[[3]]]]}]]; a[n_] := Module[{l, ll}, If[n == 0, Return[1]]; l = b[n, n]; ll = l[[3]]; l[[2]] + Sum[ll[[t+1]]*(1+t*(1+(t-1)/2)), {t, 1, Length[ll]-1}]]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Feb 13 2017, after _Alois P. Heinz_ *) %Y A209633 Cf. A093694. %K A209633 nonn %O A209633 0,2 %A A209633 _Thomas Wieder_, Mar 11 2012 %E A209633 More terms from _Alois P. Heinz_, Mar 11 2012