This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209636 #25 Mar 30 2021 01:39:17 %S A209636 1,2,4,3,8,6,7,5,16,12,14,10,19,13,17,11,32,24,28,20,38,26,34,22,53, %T A209636 37,43,29,67,41,59,31,64,48,56,40,76,52,68,44,106,74,86,58,134,82,118, %U A209636 62,131,89,107,71,163,101,139,79,241,157,191,109,331,179,277 %N A209636 Matula-numbers computed for rooted trees encoded by A071162/A071163. %C A209636 Sequence is injective: Any number occurs at most once, as each plane tree encoded by A071162/A071163 is mapped to a unique non-oriented rooted tree. See also A209637, A209638. %C A209636 Sequence A209638 gives the same terms sorted into ascending order. %H A209636 Indranil Ghosh (terms 0..1000) & Antti Karttunen, <a href="/A209636/b209636.txt">Table of n, a(n) for n = 0..8191</a> %H A209636 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A209636 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a> %F A209636 a(n) = A127301(A071163(n)) = A209637(A054429(n)). %o A209636 (Scheme) (define (A209636 n) (let loop ((n (* 2 n)) (m 1)) (cond ((< n 2) m) ((even? n) (loop (/ n 2) (* m 2))) (else (loop (/ (- n 1) 2) (A000040 m)))))) %o A209636 (PARI) A209636(n) = { my(n=2*n, m=1); while(n >= 2, if(!(n%2),m*=2,m = prime(m)); n\=2); m; } \\ _Antti Karttunen_, May 25 2017 %o A209636 (Python) %o A209636 from sympy import prime %o A209636 def a(n): %o A209636 n = 2*n %o A209636 m = 1 %o A209636 if n<2: return 1 %o A209636 while n>1: %o A209636 if n%2==0: %o A209636 n//=2 %o A209636 m*=2 %o A209636 else: %o A209636 n=(n - 1)//2 %o A209636 m=prime(m) %o A209636 return m %o A209636 print([a(n) for n in range(101)]) # _Indranil Ghosh_, May 25 2017, translated from _Antti Karttunen_'s SCHEME code %Y A209636 Cf. A000040, A054429, A071162, A071163, A127301, A209637, A278541. %K A209636 nonn,easy,base,look %O A209636 0,2 %A A209636 _Antti Karttunen_, Mar 11 2012