This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209637 #10 May 26 2017 08:55:08 %S A209637 1,2,3,4,5,7,6,8,11,17,13,19,10,14,12,16,31,59,41,67,29,43,37,53,22, %T A209637 34,26,38,20,28,24,32,127,277,179,331,109,191,157,241,79,139,101,163, %U A209637 71,107,89,131,62,118,82,134,58,86,74,106,44,68,52,76,40,56,48 %N A209637 Matula-numbers computed for rooted trees encoded by A071162 when interpreted in once-halved bit-tuple format. %C A209637 Sequence A209638 gives the same terms sorted into ascending order. %D A209637 Mueller, Szymanski, Knop and Trinajstic, A Comparison between the Matula Numbers and Bit-tuple Notation for Rooted Trees J. Chem. Inf. Comput. Sci. 1995, 35, pp. 211--213. %F A209637 a(n) = A209636(A054429(n)) = A127301(A057505(A071163(n))) = A127301(A057163(A071163(n))). %o A209637 (Python) %o A209637 from sympy import prime %o A209637 from mpmath import log %o A209637 def a054429(n): return 3*(2**int(log(n, 2))) - (n + 1) %o A209637 def a209636(n): %o A209637 n = 2*n %o A209637 m = 1 %o A209637 if n<2: return 1 %o A209637 while n>1: %o A209637 if n%2==0: %o A209637 n/=2 %o A209637 m*=2 %o A209637 else: %o A209637 n=(n - 1)/2 %o A209637 m=prime(m) %o A209637 return m %o A209637 def a(n): return 1 if n==0 else a209636(a054429(n)) # _Indranil Ghosh_, May 26 2017 %K A209637 nonn,easy %O A209637 0,2 %A A209637 _Antti Karttunen_, Mar 11 2012