cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209647 Number of n X 5 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

14, 196, 798, 2156, 4690, 8904, 15386, 24808, 37926, 55580, 78694, 108276, 145418, 191296, 247170, 314384, 394366, 488628, 598766, 726460, 873474, 1041656, 1232938, 1449336, 1692950, 1965964, 2270646, 2609348, 2984506, 3398640, 3854354, 4354336
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2012

Keywords

Comments

Column 5 of A209650.

Examples

			Some solutions for n=4:
  0 0 0 0 0    0 1 1 1 1    1 1 0 1 0    0 1 0 1 0
  1 0 1 0 1    1 1 0 1 1    0 1 1 1 1    1 1 1 0 1
  1 0 1 0 1    0 1 0 1 0    0 0 0 0 0    0 0 0 0 0
  0 0 0 0 0    0 0 0 0 0    0 0 0 0 0    0 0 0 0 0
		

Crossrefs

Cf. A209650.

Programs

  • Maple
    seq(7/2*n^4+21*n^3-7/2*n^2-7*n, n=1..50); # Robert Israel, Mar 07 2018

Formula

Empirical: a(n) = (7/2)*n^4 + 21*n^3 - (7/2)*n^2 - 7*n.
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: 14*x*(1 + 9*x - 3*x^2 - x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Empirical formula (and thus Barker's conjectures) proved by Robert Israel, Mar 07 2018: see link.