cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A209647 Number of n X 5 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

14, 196, 798, 2156, 4690, 8904, 15386, 24808, 37926, 55580, 78694, 108276, 145418, 191296, 247170, 314384, 394366, 488628, 598766, 726460, 873474, 1041656, 1232938, 1449336, 1692950, 1965964, 2270646, 2609348, 2984506, 3398640, 3854354, 4354336
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2012

Keywords

Comments

Column 5 of A209650.

Examples

			Some solutions for n=4:
  0 0 0 0 0    0 1 1 1 1    1 1 0 1 0    0 1 0 1 0
  1 0 1 0 1    1 1 0 1 1    0 1 1 1 1    1 1 1 0 1
  1 0 1 0 1    0 1 0 1 0    0 0 0 0 0    0 0 0 0 0
  0 0 0 0 0    0 0 0 0 0    0 0 0 0 0    0 0 0 0 0
		

Crossrefs

Cf. A209650.

Programs

  • Maple
    seq(7/2*n^4+21*n^3-7/2*n^2-7*n, n=1..50); # Robert Israel, Mar 07 2018

Formula

Empirical: a(n) = (7/2)*n^4 + 21*n^3 - (7/2)*n^2 - 7*n.
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: 14*x*(1 + 9*x - 3*x^2 - x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Empirical formula (and thus Barker's conjectures) proved by Robert Israel, Mar 07 2018: see link.

A209649 Number of n X 7 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

35, 1225, 7210, 24990, 65765, 145775, 287140, 518700, 876855, 1406405, 2161390, 3205930, 4615065, 6475595, 8886920, 11961880, 15827595, 20626305, 26516210, 33672310, 42287245, 52572135, 64757420, 79093700, 95852575, 115327485
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2012

Keywords

Comments

Column 7 of A209650.

Examples

			Some solutions for n=4:
  1 0 1 0 1 0 1     0 1 0 1 1 1 0     1 1 0 1 1 0 1
  0 0 0 0 0 0 0     0 0 0 0 0 0 0     0 0 0 0 0 0 0
  0 0 0 0 0 0 0     0 0 0 0 0 0 0     0 0 0 0 0 0 0
  0 0 0 0 0 0 0     0 0 0 0 0 0 0     0 0 0 0 0 0 0
		

Crossrefs

Cf. A209650.

Formula

Empirical: a(n) = 7*n^5 + 70*n^4 + (35/3)*n^3 - (105/2)*n^2 - (7/6)*n.
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: 35*x*(1 + x)*(1 + 28*x - 17*x^2) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A209651 Number of 4Xn 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

8, 64, 216, 630, 2156, 7128, 24990, 87136, 311040, 1112150, 4018716, 14563584, 53065350, 193861408, 710502760, 2609417910, 9603620076, 35401092264, 130688898510, 483039609408, 1787282764624, 6619084515926, 24532925650268
Offset: 1

Views

Author

R. H. Hardin Mar 11 2012

Keywords

Comments

Row 4 of A209650

Examples

			Some solutions for n=4
..1..1..1..1....1..0..1..0....1..0..1..0....1..1..0..1....1..0..1..1
..1..1..1..1....1..0..1..0....0..0..0..0....0..0..0..0....1..1..0..1
..1..1..1..1....1..0..1..0....0..0..0..0....0..0..0..0....0..1..0..1
..1..1..1..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 9*a(n-1) -11*a(n-2) -108*a(n-3) +272*a(n-4) +480*a(n-5) -1754*a(n-6) -942*a(n-7) +5482*a(n-8) +552*a(n-9) -9304*a(n-10) +888*a(n-11) +8539*a(n-12) -1755*a(n-13) -3871*a(n-14) +1092*a(n-15) +648*a(n-16) -216*a(n-17) for n>18

A209653 Number of 6Xn 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

12, 144, 636, 2079, 8904, 34012, 145775, 597856, 2579940, 10954895, 47622744, 205998660, 901433351, 3942155568, 17346881260, 76402898495, 337745931240, 1495044223756, 6633766629567, 29474645542848, 131183330978644
Offset: 1

Views

Author

R. H. Hardin Mar 11 2012

Keywords

Comments

Row 6 of A209650

Examples

			Some solutions for n=4
..0..0..0..0....0..1..0..1....0..0..0..0....1..0..1..1....1..0..1..1
..0..1..0..1....1..0..1..1....0..1..0..1....0..0..0..0....0..1..1..0
..0..1..0..1....1..0..1..1....0..1..0..1....0..0..0..0....0..1..1..0
..0..1..0..1....1..0..1..0....0..1..0..1....0..0..0..0....0..1..1..0
..0..1..0..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..1..0..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 13*a(n-1) -15*a(n-2) -453*a(n-3) +1521*a(n-4) +6613*a(n-5) -32909*a(n-6) -51675*a(n-7) +380097*a(n-8) +219811*a(n-9) -2799167*a(n-10) -347187*a(n-11) +14122641*a(n-12) -1318649*a(n-13) -50390909*a(n-14) +9520521*a(n-15) +128386635*a(n-16) -28476569*a(n-17) -232248311*a(n-18) +53023599*a(n-19) +292800435*a(n-20) -67701287*a(n-21) -248742653*a(n-22) +60344055*a(n-23) +134128372*a(n-24) -35691432*a(n-25) -40789736*a(n-26) +12200640*a(n-27) +5184000*a(n-28) -1728000*a(n-29) for n>30

A209645 Number of n X n 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 102, 630, 4690, 34012, 287140, 2364992, 22028490, 200930125, 2026692954, 20118254688, 217071252489, 2316174126448, 26506083938686, 301219138880440, 3632894429145798, 43657425153387876, 552138493209771090
Offset: 1

Views

Author

R. H. Hardin Mar 11 2012

Keywords

Comments

Diagonal of A209650

Examples

			Some solutions for n=4
..0..1..0..1....1..1..0..1....0..0..0..0....1..0..1..1....1..0..1..0
..0..0..0..0....1..1..1..0....0..0..0..0....0..1..1..0....0..1..1..0
..0..0..0..0....0..1..1..0....0..0..0..0....0..1..1..0....0..0..0..0
..0..0..0..0....0..1..1..0....0..0..0..0....0..1..1..0....0..0..0..0
		

A209646 Number of n X 4 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

9, 81, 270, 630, 1215, 2079, 3276, 4860, 6885, 9405, 12474, 16146, 20475, 25515, 31320, 37944, 45441, 53865, 63270, 73710, 85239, 97911, 111780, 126900, 143325, 161109, 180306, 200970, 223155, 246915, 272304, 299376, 328185, 358785, 391230
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2012

Keywords

Comments

Column 4 of A209650.

Examples

			Some solutions for n=4:
  0 1 0 1    0 1 1 0    0 0 0 0    1 0 1 0    1 0 1 1
  0 0 0 0    1 1 0 1    0 0 0 0    0 1 1 0    0 1 1 0
  0 0 0 0    0 1 0 1    0 0 0 0    0 0 0 0    0 1 1 0
  0 0 0 0    0 1 0 1    0 0 0 0    0 0 0 0    0 1 1 0
		

Crossrefs

Cf. A209650.

Programs

  • Maple
    seq(9*n^3 + (9/2)*n^2 - (9/2)*n, n=1..100); # Robert Israel, Mar 07 2018
  • PARI
    Vec(9*x*(1 + 5*x) / (1 - x)^4 + O(x^40)) \\ Colin Barker, Jul 12 2018
    
  • PARI
    a(n) = 9*n^3+(9/2)*n^2-(9/2)*n; \\ Altug Alkan, Jul 12 2018

Formula

Empirical: a(n) = 9*n^3 + (9/2)*n^2 - (9/2)*n.
Formula confirmed by Robert Israel, Mar 07 2018: see link.
From Colin Barker, Jul 12 2018: (Start)
G.f.: 9*x*(1 + 5*x) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A209648 Number of n X 6 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

22, 484, 2354, 7128, 16830, 34012, 61754, 103664, 163878, 247060, 358402, 503624, 688974, 921228, 1207690, 1556192, 1975094, 2473284, 3060178, 3745720, 4540382, 5455164, 6501594, 7691728, 9038150, 10553972, 12252834, 14148904, 16256878
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2012

Keywords

Comments

Column 6 of A209650.

Examples

			Some solutions for n=4:
..0..1..0..1..1..0....0..1..0..1..1..0....1..1..1..0..1..0....1..0..1..1..1..0
..1..0..1..0..1..1....0..0..0..0..0..0....0..0..0..0..0..0....1..1..0..1..1..1
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....1..1..0..1..0..1
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....1..1..0..1..0..1
		

Crossrefs

Cf. A209650.

Formula

Empirical: a(n) = 22*n^4 + (88/3)*n^3 - 22*n^2 - (22/3)*n.
Conjectures from Colin Barker, Jul 12 2018: (Start)
G.f.: 22*x*(1 + 17*x + 7*x^2 - x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A209652 Number of 5Xn 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 390, 1215, 4690, 16830, 65765, 251160, 994050, 3911375, 15639390, 62524602, 251961125, 1016913820, 4122470862, 16742504735, 68184829338, 278147046150, 1136817652005, 4652769761136, 19069624615146, 78246585726191
Offset: 1

Views

Author

R. H. Hardin Mar 11 2012

Keywords

Comments

Row 5 of A209650

Examples

			Some solutions for n=4
..1..1..1..0....0..0..0..0....0..1..1..0....1..1..1..1....1..0..1..0
..1..0..1..0....1..1..0..1....1..1..0..1....1..1..0..1....1..1..1..1
..1..0..1..0....0..0..0..0....1..1..0..1....0..0..0..0....0..1..0..1
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..1
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..1
		

Formula

Empirical: a(n) = 11*a(n-1) -13*a(n-2) -243*a(n-3) +709*a(n-4) +2169*a(n-5) -9198*a(n-6) -9930*a(n-7) +61958*a(n-8) +23330*a(n-9) -254062*a(n-10) -16614*a(n-11) +669763*a(n-12) -53961*a(n-13) -1146177*a(n-14) +176529*a(n-15) +1247849*a(n-16) -252499*a(n-17) -820948*a(n-18) +202824*a(n-19) +291592*a(n-20) -85440*a(n-21) -41472*a(n-22) +13824*a(n-23) for n>24

A209654 Number of 7Xn 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

14, 196, 966, 3276, 15386, 61754, 287140, 1247736, 5805450, 26247900, 122620446, 566352486, 2658874036, 12435237724, 58661967966, 276563762860, 1310299936722, 6211941942146, 29540255436804, 140624053199280, 670822454889090
Offset: 1

Views

Author

R. H. Hardin Mar 11 2012

Keywords

Comments

Row 7 of A209650

Examples

			Some solutions for n=4
..0..0..0..0....1..0..1..1....1..1..0..1....1..0..1..1....0..1..0..1
..1..1..1..0....1..1..0..1....1..1..1..0....0..1..0..1....1..0..1..0
..0..1..1..0....1..1..0..1....1..0..1..0....0..0..0..0....0..0..0..0
..0..1..1..0....0..1..0..1....1..0..1..0....0..0..0..0....0..0..0..0
..0..1..1..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 15*a(n-1) -17*a(n-2) -754*a(n-3) +2878*a(n-4) +16186*a(n-5) -93370*a(n-6) -189146*a(n-7) +1639426*a(n-8) +1204022*a(n-9) -18805282*a(n-10) -2292182*a(n-11) +152576908*a(n-12) -28963300*a(n-13) -912064552*a(n-14) +308639746*a(n-15) +4101425146*a(n-16) -1601886466*a(n-17) -13987156774*a(n-18) +5410333402*a(n-19) +36132409294*a(n-20) -12837363742*a(n-21) -70095351814*a(n-22) +22168488862*a(n-23) +100539442517*a(n-24) -28492814059*a(n-25) -104090698583*a(n-26) +27535964120*a(n-27) +74934038256*a(n-28) -19682095616*a(n-29) -35224075008*a(n-30) +9752617152*a(n-31) +9586454976*a(n-32) -2904906240*a(n-33) -1119744000*a(n-34) +373248000*a(n-35) for n>36
Showing 1-9 of 9 results.