This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209655 #78 Oct 02 2013 15:58:41 %S A209655 1,2,1,1,3,2,1,1,1,1,5,4,1,2,2,1,1,2,1,1,7,6,1,4,2,1,2,3,1,1,1,2,2,1,1 %N A209655 Tetrahedron in which the n-th slice is also one of the three views of the shell model of partitions of A207380 with n shells. %C A209655 Each slice of the tetrahedron is a triangle, thus the number of elements in the n-th slice is A000217(n). The slices are perpendicular to the slices of A026792. Each element of the n-th slice equals the volume of a column of the shell model of partitions with n shells. The sum of each row of the n-th slice is A000041(n). The sum of all elements of the n-th slice is A066186(n). %C A209655 It appears that the triangle formed by the last row of each slice gives A008284 and A058398. %C A209655 It appears that the triangle formed by the first column of each slice gives A058399. %C A209655 Also consider a vertical rectangle on the infinite square grid with shorter side = n and longer side = p(n) = A000041(n). Each row of rectangle represents a partition of n. Each part of each partition of n is a horizontal rectangle with shorter side = 1 and longer side = k, where k is the size of the part. It appears that T(n,k,j) is also the number of k-th parts of all partitions of n in the j-th column of rectangle. %e A209655 -------------------------------------------------------- %e A209655 Illustration of first five %e A209655 slices of the tetrahedron Row sum %e A209655 -------------------------------------------------------- %e A209655 . 1, 1 %e A209655 . 2, 2 %e A209655 . 1, 1, 2 %e A209655 . 3, 3 %e A209655 . 2, 1, 3 %e A209655 . 1, 1, 1, 3 %e A209655 . 5, 5 %e A209655 . 4, 1, 5 %e A209655 . 2, 2, 1, 5 %e A209655 . 1, 2, 1, 1, 5 %e A209655 . 7, 7 %e A209655 . 6, 1, 7 %e A209655 . 4, 2, 1, 7 %e A209655 . 2, 3, 1, 1, 7 %e A209655 . 1, 2, 2, 1, 1, 7 %e A209655 -------------------------------------------------------- %e A209655 . 1, 3, 1, 6, 2, 1,12, 5, 2, 1,20, 8, 4, 2, 1, %e A209655 . %e A209655 Written as a triangle begins: %e A209655 1; %e A209655 2, 1, 1; %e A209655 3, 2, 1, 1, 1, 1; %e A209655 5, 4, 1, 2, 2, 1, 1, 2, 1, 1; %e A209655 7, 6, 1, 4, 2, 1, 2, 3, 1, 1, 1, 2, 2, 1, 1; %e A209655 In which row sums give A066186. %Y A209655 Column sums give A181187. Main diagonal gives A210765. Another version is A209918. %Y A209655 Cf. A000041, A000217, A002260, A004736, A008284, A026792, A058398, A058399, A066186, A135010, A182703, A182715, A207380. %K A209655 nonn,tabf,more %O A209655 1,2 %A A209655 _Omar E. Pol_, Mar 25 2012