This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209665 #13 Nov 24 2016 17:56:59 %S A209665 1,1,8,56,524,5979,85539,1460752,29112516,661843866,16890042828, %T A209665 477756925128,14830113520286,501073056287725,18303233207719437, %U A209665 718663995114727640,30181996254384621880,1349979517537576728657,64065538251202398110415,3215056386968174418054634 %N A209665 a(n) = count of monomials, degree k=0 to n, in the power sum symmetric polynomials m(mu,k) summed over all partitions mu of n. %C A209665 Row sums of A209664. %H A209665 Alois P. Heinz, <a href="/A209665/b209665.txt">Table of n, a(n) for n = 0..386</a> %H A209665 Wikipedia, <a href="http://en.wikipedia.org/wiki/Symmetric_polynomials">Symmetric Polynomials</a> %p A209665 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A209665 b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))) %p A209665 end: %p A209665 a:= n-> add(b(n$2, k), k=0..n): %p A209665 seq(a(n), n=0..20); # _Alois P. Heinz_, Nov 24 2016 %t A209665 p[n_Integer, v_] := Sum[Subscript[x, j]^n, {j, v}]; p[par_?PartitionQ, v_] := Times @@ (p[#, v] & /@ par); Tr/@ Table[Tr[(p[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 11}, {k, l}] %Y A209665 Cf. A209664. %K A209665 nonn %O A209665 0,3 %A A209665 _Wouter Meeussen_, Mar 11 2012 %E A209665 a(0), a(12)-a(19) from _Alois P. Heinz_, Nov 24 2016