A209669 T(n,k) = count of degree k monomials in the elementary symmetric polynomials e(mu,k) summed over all partitions mu of n.
1, 1, 5, 1, 10, 37, 1, 21, 120, 405, 1, 42, 363, 1644, 5251, 1, 85, 1117, 6814, 27405, 84893, 1, 170, 3360, 27404, 138085, 514248, 1556535, 1, 341, 10164, 111045, 701960, 3145848, 11133493, 33175957, 1, 682, 30520, 445132, 3521405, 18956548, 78337448
Offset: 1
Examples
Table starts as 1; 1, 5; 1, 10, 37; 1, 21, 120, 405; 1, 42, 363, 1644, 5251; ... For n = 2, k = 2 the partitions of n are 2 and 1+1, which correspond respectively to (xy) contributing 1 and (x+y)*(x+y) contributing 4 for a total of 5. - _Peter J. Taylor_, Mar 01 2017
Links
- Peter J. Taylor, Table of n, a(n) for n = 1..5050
- Peter J. Taylor, Python program to compute terms
- Wikipedia, Symmetric polynomials
Crossrefs
Second column is A000975 offset by 1. - Peter J. Taylor, Mar 01 2017
Programs
-
Mathematica
e[n_, v_] := Tr[Times @@@ Select[Subsets[Table[Subscript[x, j], {j, v}]], Length[#] == n &]]; e[par_?PartitionQ, v_] := Times @@ (e[#, v] & /@ par); Table[Tr[(e[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]
-
Python
# See Taylor link
Formula
T(n,k) = Sum_{lambda} Product_{i} binomial(k, lambda_i) where the sum is over partitions of n. - Peter J. Taylor, Mar 01 2017
Comments