cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209670 a(n) = count of monomials, of degrees k=1 to n, in the elementary symmetric polynomials e(mu,k) summed over all partitions mu of n.

This page as a plain text file.
%I A209670 #16 Mar 02 2017 21:15:12
%S A209670 1,6,48,547,7301,120315,2239803,48278809,1153934735,30834749017,
%T A209670 900390736548,28782727026031,993911439932097,37039780178206877,
%U A209670 1477457354215115765,62950691931099382408,2849385291187650049208,136701569959985165325989,6924379544998951633495956
%N A209670 a(n) = count of monomials, of degrees k=1 to n, in the elementary symmetric polynomials e(mu,k) summed over all partitions mu of n.
%H A209670 Peter J. Taylor, <a href="/A209670/b209670.txt">Table of n, a(n) for n = 1..100</a>
%H A209670 Wikipedia, <a href="http://en.wikipedia.org/wiki/Symmetric_polynomials">Symmetric Polynomials</a>
%F A209670 Row sums of triangle A209669.
%t A209670 e[n_, v_] := Tr[Times @@@ Select[Subsets[Table[Subscript[x, j], {j, v}]], Length[#] == n &]]; e[par_?PartitionQ, v_] := Times @@ (e[#, v] & /@ par); Tr/@ Table[Tr[(e[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]
%Y A209670 Cf. A209664-A209673.
%K A209670 nonn
%O A209670 1,2
%A A209670 _Wouter Meeussen_, Mar 11 2012
%E A209670 More terms from _Peter J. Taylor_, Mar 02 2017