A209671 a(n) = count of monomials, of degree k=n, in the elementary symmetric polynomials e(mu,k) summed over all partitions mu of n.
1, 5, 37, 405, 5251, 84893, 1556535, 33175957, 785671039, 20841132255, 604829604655, 19236214748061, 661348833658423, 24554370466786319, 976242978063976162, 41477168810872793493, 1872694395510428040983, 89644070894632864643651, 4531712537608857605836563
Offset: 1
Keywords
Links
- Peter J. Taylor, Table of n, a(n) for n = 1..100
- Wikipedia, Symmetric Polynomials
Programs
-
Mathematica
e[n_, v_] := Tr[Times @@@ Select[Subsets[Table[Subscript[x, j], {j, v}]], Length[#] == n &]]; e[par_?PartitionQ, v_] := Times @@ (e[#, v] & /@ par); Tr /@ Table[(e[#, l] & /@ Partitions[l]) /. Subscript[x, _] -> 1, {l, 10}]
Formula
Main diagonal of triangle A209669.
Extensions
More terms from Peter J. Taylor, Mar 02 2017