cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209675 Radon function at even positions: a(n) = A003484(2*n).

This page as a plain text file.
%I A209675 #15 Nov 29 2022 02:42:23
%S A209675 2,4,2,8,2,4,2,9,2,4,2,8,2,4,2,10,2,4,2,8,2,4,2,9,2,4,2,8,2,4,2,12,2,
%T A209675 4,2,8,2,4,2,9,2,4,2,8,2,4,2,10,2,4,2,8,2,4,2,9,2,4,2,8,2,4,2,16,2,4,
%U A209675 2,8,2,4,2,9,2,4,2,8,2,4,2,10,2,4,2,8,2
%N A209675 Radon function at even positions: a(n) = A003484(2*n).
%H A209675 Reinhard Zumkeller, <a href="/A209675/b209675.txt">Table of n, a(n) for n = 1..10000</a>
%F A209675 a(n) = A053381(n-1) + 1.
%F A209675 a(n) > 1.
%F A209675 a(A005408(n)) = 2; a(A016825(n)) = 4; a(A017113(n)) = 8; a(A051062(n)) = 9.
%F A209675 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4/3. - _Amiram Eldar_, Nov 29 2022
%t A209675 a[n_] := 8*Floor[(e = IntegerExponent[n, 2] + 1)/4] + 2^Mod[e, 4]; Array[a, 100] (* _Amiram Eldar_, Nov 29 2022 *)
%o A209675 (Haskell)
%o A209675 a209675 = a003484 . (* 2)
%Y A209675 Cf. A003484, A003485, A005408, A016825, A017113, A051062, A053381.
%K A209675 nonn,easy
%O A209675 1,1
%A A209675 _Reinhard Zumkeller_, Mar 11 2012