A209687 Triangle of coefficients of polynomials u(n,x) jointly generated with A208339; see the Formula section.
1, 0, 2, 0, 1, 5, 0, 1, 5, 12, 0, 1, 6, 18, 29, 0, 1, 7, 26, 58, 70, 0, 1, 8, 35, 98, 175, 169, 0, 1, 9, 45, 149, 339, 507, 408, 0, 1, 10, 56, 212, 574, 1108, 1428, 985, 0, 1, 11, 68, 288, 894, 2066, 3476, 3940, 2378, 0, 1, 12, 81, 378, 1314, 3492, 7074, 10572
Offset: 1
Examples
First five rows: 1 0...2 0...1...5 0...1...5...12 0...1...6...18...29 First three polynomials v(n,x): 1, 2x, x + 5x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209687 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208339 *)
Formula
u(n,x)=x*u(n-1,x)+x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 28 2012
G.f.: (-1+x)/(-1+x+2*x*y-x^2*y+x^2*y^2). - R. J. Mathar, Aug 12 2015
Comments