A209689 Triangle of coefficients of polynomials u(n,x) jointly generated with A209690; see the Formula section.
1, 0, 2, 0, 2, 3, 0, 1, 6, 4, 0, 1, 4, 13, 5, 0, 1, 3, 13, 24, 6, 0, 1, 3, 9, 35, 40, 7, 0, 1, 3, 8, 28, 81, 62, 8, 0, 1, 3, 8, 22, 82, 167, 91, 9, 0, 1, 3, 8, 21, 64, 217, 315, 128, 10, 0, 1, 3, 8, 21, 56, 188, 519, 554, 174, 11, 0, 1, 3, 8, 21, 55, 155, 529, 1136, 921
Offset: 1
Examples
First five rows: 1 0...2 0...2...3 0...1...6...4 0...1...4...13...5 First three polynomials v(n,x): 1, 2x, 2x + 3x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209689 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209690 *)
Formula
u(n,x)=x*u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments