cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209692 Triangle of coefficients of polynomials v(n,x) jointly generated with A209691; see the Formula section.

This page as a plain text file.
%I A209692 #7 Mar 30 2012 18:58:15
%S A209692 1,2,2,1,6,4,1,4,16,8,1,3,16,40,16,1,3,11,56,96,32,1,3,10,43,176,224,
%T A209692 64,1,3,10,35,163,512,512,128,1,3,10,34,128,579,1408,1152,256,1,3,10,
%U A209692 34,117,477,1923,3712,2560,512,1,3,10,34
%N A209692 Triangle of coefficients of polynomials v(n,x) jointly generated with A209691; see the Formula section.
%C A209692 Combinatorial limit of rows:  A007052.
%C A209692 For a discussion and guide to related arrays, see A208510.
%F A209692 u(n,x)=x*u(n-1,x)+x*v(n-1,x),
%F A209692 v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
%F A209692 where u(1,x)=v(1,x)=1.
%e A209692 First five rows:
%e A209692 1
%e A209692 2...2
%e A209692 1...6...4
%e A209692 1...4...16...8
%e A209692 1...3...16...40...16
%e A209692 First three polynomials v(n,x): 1, 2 + 2x , 1 + 6x + 4x^2.
%t A209692 u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t A209692 u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
%t A209692 v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
%t A209692 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A209692 Table[Expand[v[n, x]], {n, 1, z/2}]
%t A209692 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A209692 TableForm[cu]
%t A209692 Flatten[%]   (* A209691 *)
%t A209692 Table[Expand[v[n, x]], {n, 1, z}]
%t A209692 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t A209692 TableForm[cv]
%t A209692 Flatten[%]   (* A209692 *)
%Y A209692 Cf. A209691, A208510.
%K A209692 nonn,tabl
%O A209692 1,2
%A A209692 _Clark Kimberling_, Mar 12 2012