A209693 Triangle of coefficients of polynomials u(n,x) jointly generated with A209694; see the Formula section.
1, 0, 2, 0, 3, 3, 0, 4, 9, 4, 0, 5, 17, 19, 5, 0, 6, 27, 49, 34, 6, 0, 7, 39, 98, 115, 55, 7, 0, 8, 53, 170, 284, 236, 83, 8, 0, 9, 69, 269, 585, 706, 440, 119, 9, 0, 10, 87, 399, 1070, 1706, 1568, 763, 164, 10, 0, 11, 107, 564, 1799, 3577, 4395, 3193, 1250, 219
Offset: 1
Examples
First five rows: 1 0...2 0...2...4 0...1...8...8 0...1...5...24...16 First three polynomials v(n,x): 1, 2x, 2x + 4x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209693 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209694 *)
Formula
u(n,x)=x*u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments