This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209694 #5 Mar 30 2012 18:58:15 %S A209694 1,3,1,4,6,1,5,13,10,1,6,22,32,15,1,7,33,71,66,21,1,8,46,131,186,121, %T A209694 28,1,9,61,216,415,422,204,36,1,10,78,330,801,1121,862,323,45,1,11,97, %U A209694 477,1400,2507,2689,1625,487,55,1,12,118,661,2276,4977,6902 %N A209694 Triangle of coefficients of polynomials v(n,x) jointly generated with A209693; see the Formula section. %C A209694 Alternating row sums are periodic. For a discussion and guide to related arrays, see A208510. %F A209694 u(n,x)=x*u(n-1,x)+x*v(n-1,x), %F A209694 v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1, %F A209694 where u(1,x)=1, v(1,x)=1. %e A209694 First five rows: %e A209694 1 %e A209694 3...1 %e A209694 4...6....1 %e A209694 5...13...10...1 %e A209694 6...22...32...15...1 %e A209694 First three polynomials v(n,x): 1, 3 + x , 4 + 6x + x^2. %t A209694 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209694 u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; %t A209694 v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A209694 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209694 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209694 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209694 TableForm[cu] %t A209694 Flatten[%] (* A209693 *) %t A209694 Table[Expand[v[n, x]], {n, 1, z}] %t A209694 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209694 TableForm[cv] %t A209694 Flatten[%] (* A209694 *) %Y A209694 Cf. A209693, A208510. %K A209694 nonn,tabl %O A209694 1,2 %A A209694 _Clark Kimberling_, Mar 12 2012