A209695 Triangle of coefficients of polynomials u(n,x) jointly generated with A209696; see the Formula section.
1, 1, 2, 1, 5, 5, 1, 8, 18, 12, 1, 11, 40, 58, 29, 1, 14, 71, 164, 175, 70, 1, 17, 111, 357, 601, 507, 169, 1, 20, 160, 664, 1550, 2048, 1428, 408, 1, 23, 218, 1112, 3346, 6106, 6632, 3940, 985, 1, 26, 285, 1728, 6394, 15012, 22442, 20680, 10701, 2378
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 5, 5; 1, 8, 18, 12; 1, 11, 40, 58, 29; First three polynomials u(n,x): 1 1 + 2x 1 + 5x + 5x^2. From _Philippe Deléham_, Mar 24 2012: (Start) (1, 0, 1/2, -1/2, 0, 0, ...) DELTA (0, 2, 1/2, -1/2, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 5, 5, 0; 1, 8, 18, 12, 0; 1, 11, 40, 58, 29, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209695 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209696 *)
Formula
u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 24 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-2*y*x-y*x^2-y^2*x^2)/(1-x-2*y*x-y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments