A209697 Triangle of coefficients of polynomials u(n,x) jointly generated with A209698; see the Formula section.
1, 0, 2, 0, 2, 4, 0, 3, 6, 8, 0, 4, 10, 16, 16, 0, 5, 15, 30, 40, 32, 0, 6, 21, 50, 84, 96, 64, 0, 7, 28, 77, 154, 224, 224, 128, 0, 8, 36, 112, 258, 448, 576, 512, 256, 0, 9, 45, 156, 405, 810, 1248, 1440, 1152, 512, 0, 10, 55, 210, 605, 1362, 2420, 3360, 3520
Offset: 1
Examples
First five rows: 1 0...2 0...2....4 0...3....6...8 0...4...10...16...16 First three polynomials v(n,x): 1, 2x, 2x + 4x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209697 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209698 *)
Formula
u(n,x)=x*u(n-1,x)+x*v(n-1,x),
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments