A209701 Triangle of coefficients of polynomials u(n,x) jointly generated with A209702; see the Formula section.
1, 0, 2, 0, 2, 5, 0, 3, 7, 12, 0, 4, 11, 23, 29, 0, 5, 16, 41, 70, 70, 0, 6, 22, 66, 140, 204, 169, 0, 7, 29, 99, 247, 455, 577, 408, 0, 8, 37, 141, 401, 875, 1423, 1597, 985, 0, 9, 46, 193, 613, 1529, 2965, 4321, 4348, 2378, 0, 10, 56, 256, 895, 2495, 5549
Offset: 1
Examples
First five rows: 1 0...2 0...2...5 0...3...7....12 0...4...11...23...29 First three polynomials v(n,x): 1, 2x, 2x + 5x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209701 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209702 *)
Formula
u(n,x)=x*u(n-1,x)+x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments