A209703 Triangle of coefficients of polynomials u(n,x) jointly generated with A209704; see the Formula section.
1, 0, 2, 0, 3, 3, 0, 4, 6, 5, 0, 5, 10, 14, 8, 0, 6, 15, 28, 28, 13, 0, 7, 21, 48, 66, 55, 21, 0, 8, 28, 75, 129, 149, 104, 34, 0, 9, 36, 110, 225, 326, 319, 193, 55, 0, 10, 45, 154, 363, 626, 774, 661, 352, 89, 0, 11, 55, 208, 553, 1099, 1625, 1761, 1332, 634
Offset: 1
Examples
First five rows: 1 0...2 0...3....3 0...4....6...5 0...5...10...14...8 First three polynomials v(n,x): 1, 2x, 3x + 3x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209703 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209704 *)
Formula
u(n,x)=x*u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments