A209704 Triangle of coefficients of polynomials v(n,x) jointly generated with A209703; see the Formula section.
1, 3, 1, 4, 3, 2, 5, 6, 8, 3, 6, 10, 18, 14, 5, 7, 15, 33, 38, 27, 8, 8, 21, 54, 81, 83, 49, 13, 9, 28, 82, 150, 197, 170, 89, 21, 10, 36, 118, 253, 401, 448, 342, 159, 34, 11, 45, 163, 399, 736, 999, 987, 671, 282, 55, 12, 55, 218, 598, 1253, 1988, 2387, 2106
Offset: 1
Examples
First five rows: 1 3...1 4...3....2 5...6....8....3 6...10...18...14...5 First three polynomials v(n,x): 1, 3 + x , 4 + 3x + 2x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209703 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209704 *)
Formula
u(n,x)=x*u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments