A209705 Triangle of coefficients of polynomials u(n,x) jointly generated with A209706; see the Formula section.
1, 0, 2, 0, 3, 4, 0, 4, 10, 8, 0, 5, 18, 28, 16, 0, 6, 28, 64, 72, 32, 0, 7, 40, 120, 200, 176, 64, 0, 8, 54, 200, 440, 576, 416, 128, 0, 9, 70, 308, 840, 1456, 1568, 960, 256, 0, 10, 88, 448, 1456, 3136, 4480, 4096, 2176, 512, 0, 11, 108, 624, 2352, 6048
Offset: 1
Examples
First five rows: 1 0...2 0...3...4 0...4...10...8 0...5...18...28...16 First three polynomials v(n,x): 1, 2x, 3x + 4x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209705 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209706 *)
Formula
u(n,x) = x*u(n-1,x)+x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)-T(n-2,k)-2*T(n-2,k-1), T(1,0)=1, T(2,0)=0, T(2,1)=2, T(3,0)=0, T(3,1)=3, T(3,2)=4, T(n,k)=0 if k<0 or if k>=n. - Philippe Deléham, Dec 27 2013
Comments