A209725 1/4 the number of (n+1) X 7 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.
12, 13, 14, 16, 18, 22, 26, 34, 42, 58, 74, 106, 138, 202, 266, 394, 522, 778, 1034, 1546, 2058, 3082, 4106, 6154, 8202, 12298, 16394, 24586, 32778, 49162, 65546, 98314, 131082, 196618, 262154, 393226, 524298, 786442, 1048586, 1572874, 2097162
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1..0..1..0..1....2..0..2..0..1..0..2....0..1..0..1..0..1..0 ..0..2..0..2..0..2..0....1..2..1..2..0..2..1....2..0..2..0..2..0..2 ..1..0..1..0..1..0..1....2..0..2..0..1..0..2....0..1..0..1..0..1..0 ..0..2..0..2..0..2..0....1..2..1..2..0..2..1....2..0..2..0..2..0..2 ..1..0..1..0..1..0..1....2..0..2..0..1..0..2....0..1..0..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A209727.
Formula
Empirical: a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3).
Conjectures from Colin Barker, Jul 12 2018: (Start)
G.f.: x*(12 + x - 23*x^2) / ((1 - x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2 - 1) + 10 for n even.
a(n) = 2^((n + 1)/2) + 10 for n odd.
(End)
Comments