cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A209735 1/4 the number of (n+1)X8 0..3 arrays with every 2X2 subblock having distinct edge sums.

Original entry on oeis.org

693752, 62007896, 6111765608, 660346502176, 72515584004736, 8142073013529816, 914481225452329872, 103429210168484832664, 11680327691835359996376, 1322584722099506691068936, 149590064327411189639443688
Offset: 1

Views

Author

R. H. Hardin Mar 12 2012

Keywords

Comments

Column 7 of A209736

Examples

			Some solutions for n=4
..2..3..3..1..3..1..1..0....1..0..0..0..0..3..1..2....3..3..3..0..1..1..1..1
..2..0..2..1..2..0..3..2....1..3..1..3..1..3..0..2....0..1..2..2..2..3..0..3
..2..1..2..0..2..1..3..0....1..0..0..2..0..2..0..1....2..3..3..0..1..3..2..2
..2..0..2..3..2..0..3..2....1..3..1..3..0..3..3..3....0..0..2..0..2..3..1..0
..1..0..1..1..1..0..1..0....2..3..2..3..1..1..0..1....3..1..2..1..2..0..1..3
		

A209729 1/4 the number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having distinct edge sums.

Original entry on oeis.org

22, 124, 696, 3912, 21976, 123480, 693752, 3897880, 21900088, 123045592, 691329528, 3884227224, 21823477432, 122614931544, 688910387576, 3870634114072, 21747107494456, 122185841630680, 686499566270712
Offset: 1

Views

Author

R. H. Hardin, Mar 12 2012

Keywords

Comments

Column 1 of A209736.

Examples

			Some solutions for n=4:
..3..1....1..0....1..2....1..3....1..2....0..0....2..1....1..3....1..0....1..1
..2..0....1..3....0..2....0..2....3..3....1..2....2..0....0..2....1..3....3..2
..1..0....2..3....3..2....3..2....1..2....1..3....1..0....3..2....0..2....0..0
..1..3....1..1....3..0....1..0....0..0....0..2....1..3....3..0....1..2....3..1
..0..2....0..3....2..0....1..3....1..3....0..1....2..3....3..1....1..3....2..0
		

Crossrefs

Cf. A209736.

Formula

Empirical: a(n) = 3*a(n-1) + 14*a(n-2) + 4*a(n-3).
Empirical g.f.: 2*x*(11 + 29*x + 8*x^2) / (1 - 3*x - 14*x^2 - 4*x^3). - Colin Barker, Jul 12 2018

A209730 1/4 the number of (n+1)X3 0..3 arrays with every 2X2 subblock having distinct edge sums.

Original entry on oeis.org

124, 1096, 9712, 86744, 775096, 6933120, 62007896, 554698328, 4961776976, 44385441816, 397039390488, 3551673425792, 31770878566904, 284202098661272, 2542285677573168, 22741649976952728, 203432011675276088
Offset: 1

Views

Author

R. H. Hardin Mar 12 2012

Keywords

Comments

Column 2 of A209736

Examples

			Some solutions for n=4
..2..0..2....1..1..3....3..1..3....2..1..3....1..0..0....2..0..0....1..1..2
..3..3..2....3..0..0....3..0..2....2..0..2....1..3..1....2..1..2....2..3..3
..1..0..2....1..1..2....1..1..3....2..3..2....2..3..0....3..1..3....0..0..1
..3..3..2....2..3..3....3..2..3....2..0..2....1..3..1....0..1..0....1..2..2
..0..1..1....0..0..1....1..1..3....1..0..1....0..2..1....2..3..2....3..3..0
		

Formula

Empirical: a(n) = 11*a(n-1) +13*a(n-2) -364*a(n-3) +519*a(n-4) +2741*a(n-5) -6099*a(n-6) -4620*a(n-7) +15632*a(n-8) -1696*a(n-9) -8896*a(n-10) +3328*a(n-11)

A209731 1/4 the number of (n+1)X4 0..3 arrays with every 2X2 subblock having distinct edge sums.

Original entry on oeis.org

696, 9712, 137888, 1995752, 28927984, 420545824, 6111765608, 88883321584, 1292321119496, 18793764804064, 273281958853584, 3974120752445352, 57789976679148952, 840380963807821656, 12220602110589974744
Offset: 1

Views

Author

R. H. Hardin Mar 12 2012

Keywords

Comments

Column 3 of A209736

Examples

			Some solutions for n=4
..3..1..3..3....2..2..1..0....2..3..2..2....1..1..3..3....0..1..0..0
..3..0..0..1....0..3..3..3....0..1..0..1....3..0..0..1....3..3..3..1
..1..1..2..2....0..1..2..0....2..2..0..2....2..2..3..3....1..2..0..1
..2..3..3..0....2..3..3..1....0..1..0..1....1..0..0..1....0..2..3..1
..0..1..2..0....1..1..0..1....2..2..2..3....1..3..2..2....1..2..0..0
		

Formula

Empirical: a(n) = 14*a(n-1) +156*a(n-2) -2224*a(n-3) -7407*a(n-4) +130352*a(n-5) +139225*a(n-6) -3967738*a(n-7) -347340*a(n-8) +71434181*a(n-9) -28076530*a(n-10) -808939517*a(n-11) +497233986*a(n-12) +5937897631*a(n-13) -3990226320*a(n-14) -28600057758*a(n-15) +17484900856*a(n-16) +90252403892*a(n-17) -42280584722*a(n-18) -183177183716*a(n-19) +52345388842*a(n-20) +228997243328*a(n-21) -25762931959*a(n-22) -164559319657*a(n-23) -1566342824*a(n-24) +63269043596*a(n-25) +5091355688*a(n-26) -11482954208*a(n-27) -1243500736*a(n-28) +729105088*a(n-29) +59218432*a(n-30) -12493824*a(n-31)

A209732 1/4 the number of (n+1)X5 0..3 arrays with every 2X2 subblock having distinct edge sums.

Original entry on oeis.org

3912, 86744, 1995752, 47572464, 1138541280, 27425792944, 660346502176, 15926642688032, 383927816903616, 9260294185296568, 223295813816665920, 5385580739872287984, 129876262463016021256, 3132320639165421379936
Offset: 1

Views

Author

R. H. Hardin Mar 12 2012

Keywords

Comments

Column 4 of A209736

Examples

			Some solutions for n=4
..0..1..0..1..3....3..3..0..0..3....2..1..1..1..0....1..0..0..0..0
..3..3..2..2..3....1..2..2..1..1....3..3..0..3..0....3..2..3..1..2
..0..1..0..1..1....3..3..0..0..3....0..2..2..3..2....1..0..3..0..2
..0..2..0..2..3....0..1..1..2..2....0..1..0..3..0....2..2..2..0..1
..3..2..3..2..0....3..3..0..0..1....2..2..0..1..0....1..0..3..3..3
		

A209733 1/4 the number of (n+1)X6 0..3 arrays with every 2X2 subblock having distinct edge sums.

Original entry on oeis.org

21976, 775096, 28927984, 1138541280, 45147495264, 1809791149768, 72515584004736, 2914488537817408, 117033599127615880, 4704742675739474176, 189030631236371886792, 7598451666243980931808, 305353336500744007552616
Offset: 1

Views

Author

R. H. Hardin Mar 12 2012

Keywords

Comments

Column 5 of A209736

Examples

			Some solutions for n=4
..1..1..1..3..3..3....1..0..0..0..0..3....0..3..2..3..1..1....0..2..1..0..1..2
..2..3..0..0..1..2....1..3..1..2..1..3....2..3..0..0..0..3....1..3..3..2..3..3
..1..3..2..3..1..3....1..0..0..2..0..3....0..1..1..2..1..3....0..0..1..0..0..1
..1..0..2..0..0..3....1..3..1..2..1..1....2..2..3..3..1..0....3..2..2..2..3..1
..1..3..2..1..2..3....1..2..0..0..0..3....3..0..0..2..1..3....0..0..3..0..3..2
		

A209734 1/4 the number of (n+1)X7 0..3 arrays with every 2X2 subblock having distinct edge sums.

Original entry on oeis.org

123480, 6933120, 420545824, 27425792944, 1809791149768, 121396901813560, 8142073013529816, 548770608436244800, 36942499122761432872, 2491439485029085248096, 167889440702169327824712
Offset: 1

Views

Author

R. H. Hardin Mar 12 2012

Keywords

Comments

Column 6 of A209736

Examples

			Some solutions for n=4
..3..1..3..1..0..3..3....3..0..1..1..2..2..3....1..1..1..0..1..1..3
..3..2..3..2..2..2..0....2..2..2..3..3..0..3....2..3..2..0..3..2..3
..3..0..3..1..0..1..0....3..0..1..1..2..2..2....1..3..1..0..1..0..1
..2..0..2..1..3..1..3....2..0..2..3..3..0..1....0..2..1..3..3..3..1
..2..3..3..1..0..0..0....1..0..1..1..2..2..2....0..3..1..2..1..2..1
		

A209728 1/4 the number of (n+1)X(n+1) 0..3 arrays with every 2X2 subblock having distinct edge sums.

Original entry on oeis.org

22, 1096, 137888, 47572464, 45147495264, 121396901813560, 914481225452329872, 19676655455650623737848
Offset: 1

Views

Author

R. H. Hardin Mar 12 2012

Keywords

Comments

Diagonal of A209736

Examples

			Some solutions for n=4
..2..3..2..2..3....1..3..2..2..0....3..1..1..1..3....3..3..0..1..0
..1..1..0..1..1....2..3..0..1..0....2..0..3..2..3....1..2..2..2..0
..2..3..3..3..0....0..1..0..2..2....1..0..1..0..3....1..3..0..1..0
..1..1..0..1..1....2..3..3..3..0....1..3..3..0..2....0..2..0..2..0
..2..3..2..3..0....0..0..2..1..1....0..0..2..0..3....3..2..3..2..3
		
Showing 1-8 of 8 results.