cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209740 Number of nX4 0..5 arrays with every 2X2 subblock containing exactly one value repeat, and new values 0..5 introduced in row major order.

This page as a plain text file.
%I A209740 #7 Jul 22 2025 21:56:30
%S A209740 15,700,103373,20611956,4474325828,991613495404,220845828478730,
%T A209740 49242046909442868,10982471712866182098,2449579228342732267816,
%U A209740 546373088082223670747386,121867698385924682716244064
%N A209740 Number of nX4 0..5 arrays with every 2X2 subblock containing exactly one value repeat, and new values 0..5 introduced in row major order.
%C A209740 Column 4 of A209744
%H A209740 R. H. Hardin, <a href="/A209740/b209740.txt">Table of n, a(n) for n = 1..210</a>
%F A209740 Empirical: a(n) = 244*a(n-1) +137*a(n-2) -1195614*a(n-3) +21837944*a(n-4) +1404675270*a(n-5) -36835307408*a(n-6) -326873376252*a(n-7) +14507648154376*a(n-8) -8311682181464*a(n-9) -2334523810998832*a(n-10) +8762975100490480*a(n-11) +185277092995650336*a(n-12) -908553103605691712*a(n-13) -8222060623354335360*a(n-14) +40603092591766507264*a(n-15) +222543140644632005632*a(n-16) -906919532901077344256*a(n-17) -3774725396673218404352*a(n-18) +10011737555551519784960*a(n-19) +37478635910651820179456*a(n-20) -48928099712667888910336*a(n-21) -182050232765906369380352*a(n-22) +115193182556326721486848*a(n-23) +411251029796589926350848*a(n-24) -170990851031162490454016*a(n-25) -418387866292483163947008*a(n-26) +167007575033595637530624*a(n-27) +154943201526404521918464*a(n-28) -70873530141897822044160*a(n-29) for n>30
%e A209740 Some solutions for n=5
%e A209740 ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..0....0..0..0..0
%e A209740 ..1..2..3..2....1..2..1..2....1..2..1..2....1..2..0..2....1..2..1..2
%e A209740 ..4..1..1..1....0..0..2..3....0..1..3..3....0..1..2..3....0..0..0..2
%e A209740 ..4..3..4..0....1..2..1..1....3..0..0..1....4..4..1..1....3..1..2..4
%e A209740 ..5..4..5..0....4..4..4..2....0..4..1..4....5..3..3..2....5..3..1..1
%K A209740 nonn
%O A209740 1,1
%A A209740 _R. H. Hardin_ Mar 12 2012