cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209746 Triangle of coefficients of polynomials v(n,x) jointly generated with A209745; see the Formula section.

Original entry on oeis.org

1, 2, 2, 3, 7, 4, 5, 17, 20, 8, 8, 37, 65, 52, 16, 13, 75, 176, 210, 128, 32, 21, 146, 428, 679, 616, 304, 64, 34, 276, 971, 1921, 2312, 1696, 704, 128, 55, 511, 2097, 4970, 7449, 7240, 4464, 1600, 256, 89, 931, 4366, 12056, 21622, 26146, 21344
Offset: 1

Views

Author

Clark Kimberling, Mar 13 2012

Keywords

Comments

Row n begins with F(n+1) and ends with 2^(n-1), where F=A000045 (Fibonacci numbers).
Alternating row sums: 1,0,0,0,0,0,0,0,0,0,...
For a discussion and guide to related arrays, see A208510.
Riordan array ((1+x)/(1-x-x^2), (2x+x^2)/(1-x-x^2)). - Philippe Deléham, Mar 24 2012
Triangle given by (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012

Examples

			First five rows:
  1;
  2,  2;
  3,  7,  4;
  5, 17, 20,  8;
  8, 37, 65, 52, 16;
First three polynomials v(n,x):
  1
  2 + 2x
  3 + 7x + 4x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209745 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209746 *)

Formula

u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(1,0) = 1, T(2,0) = T(2,1) = 2, T(n,k) = 0 if k < 0 or if k >= 0. - Philippe Deléham, Mar 24 2012