This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209750 #9 Aug 07 2025 04:35:27 %S A209750 1,2,1,2,4,1,3,6,7,1,3,11,15,11,1,4,14,32,32,16,1,4,21,51,79,61,22,1, %T A209750 5,25,84,152,174,107,29,1,5,34,118,277,393,352,176,37,1,6,39,172,447, %U A209750 796,915,666,275,46,1,6,50,225,705,1446,2060,1965,1193,412,56,1 %N A209750 Triangle of coefficients of polynomials v(n,x) jointly generated with A209749; see the Formula section. %C A209750 For a discussion and guide to related arrays, see A208510. %F A209750 u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x), %F A209750 v(n,x)=u(n-1,x)+x*v(n-1,x)+1, %F A209750 where u(1,x)=1, v(1,x)=1. %e A209750 First five rows: %e A209750 1 %e A209750 2 1 %e A209750 2 4 1 %e A209750 3 6 7 1 %e A209750 3 11 15 11 1 %e A209750 First three polynomials v(n,x): 1, 2 + x, 2 + 4*x + x^2. %t A209750 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209750 u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209750 v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1; %t A209750 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209750 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209750 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209750 TableForm[cu] %t A209750 Flatten[%] (* A209749 *) %t A209750 Table[Expand[v[n, x]], {n, 1, z}] %t A209750 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209750 TableForm[cv] %t A209750 Flatten[%] (* A209750 *) %Y A209750 Cf. A209649, A208510. %K A209750 nonn,tabl %O A209750 1,2 %A A209750 _Clark Kimberling_, Mar 14 2012