A209753 Triangle of coefficients of polynomials u(n,x) jointly generated with A209754; see the Formula section.
1, 1, 2, 3, 5, 3, 5, 14, 12, 4, 9, 30, 40, 23, 5, 15, 63, 107, 93, 39, 6, 25, 124, 264, 300, 190, 61, 7, 41, 238, 604, 858, 722, 354, 90, 8, 67, 445, 1319, 2242, 2364, 1559, 615, 127, 9, 109, 818, 2772, 5500, 6966, 5783, 3101, 1011, 173, 10, 177, 1482
Offset: 1
Examples
First five rows: 1 1...2 3...5....3 5...14...12...4 9...30...40...23...5 First three polynomials u(n,x): 1, 1 + 2x, 3 + 5x + 3x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209753 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209754 *)
Formula
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments