A209754 Triangle of coefficients of polynomials v(n,x) jointly generated with A209753; see the Formula section.
1, 3, 1, 5, 6, 1, 9, 16, 10, 1, 15, 39, 38, 15, 1, 25, 84, 117, 76, 21, 1, 41, 172, 308, 286, 136, 28, 1, 67, 337, 744, 894, 612, 225, 36, 1, 109, 642, 1685, 2496, 2228, 1191, 351, 45, 1, 177, 1196, 3646, 6423, 7088, 4978, 2157, 523, 55, 1, 287, 2191
Offset: 1
Examples
First five rows: 1 3....1 5....6....1 9....16...10...1 15...39...38...15...1 First three polynomials v(n,x): 1, 3 + x , 5 + 6x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209753 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209754 *)
Formula
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments