This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209765 #5 Mar 30 2012 18:58:15 %S A209765 1,1,2,1,5,5,1,5,15,12,1,5,21,45,29,1,5,21,77,129,70,1,5,21,89,265, %T A209765 361,169,1,5,21,89,353,865,991,408,1,5,21,89,377,1325,2717,2681,985,1, %U A209765 5,21,89,377,1549,4733,8281,7169,2378,1,5,21,89,377,1597,6125 %N A209765 Triangle of coefficients of polynomials u(n,x) jointly generated with A209766; see the Formula section. %C A209765 Limiting row: F(2+3k), where F=A000045 (Fibonacci numbers) %C A209765 Coefficient of x^n in u(n,x): 1,2,5,12,.... A000129(n) %C A209765 Row sums: 1,3,11,33,101,303,911,2733,..... A081250 %C A209765 Alternating row sums: 1,-1,1,-1,1,-1,,..... A033999 %C A209765 For a discussion and guide to related arrays, see A208510. %F A209765 u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x), %F A209765 v(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1, %F A209765 where u(1,x)=1, v(1,x)=1. %e A209765 First five rows: %e A209765 1 %e A209765 1...2 %e A209765 1...5...5 %e A209765 1...5...15...12 %e A209765 1...5...21...45...29 %e A209765 First three polynomials u(n,x): 1, 1 + 2x, 1 + 5x + 5x^2. %t A209765 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209765 u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209765 v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1; %t A209765 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209765 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209765 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209765 TableForm[cu] %t A209765 Flatten[%] (* A209765 *) %t A209765 Table[Expand[v[n, x]], {n, 1, z}] %t A209765 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209765 TableForm[cv] %t A209765 Flatten[%] (* A209766 *) %t A209765 Table[u[n, x] /. x -> 1, {n, 1, z}] (* A081250 *) %t A209765 Table[v[n, x] /. x -> 1, {n, 1, z}] (* A060925 *) %t A209765 Table[u[n, x] /. x -> -1, {n, 1, z}] (* A033999 *) %t A209765 Table[v[n, x] /. x -> -1, {n, 1, z}] (* A042963 signed *) %Y A209765 Cf. A209766, A208510. %K A209765 nonn,tabl %O A209765 1,3 %A A209765 _Clark Kimberling_, Mar 14 2012