cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209770 Triangle of coefficients of polynomials v(n,x) jointly generated with A209769; see the Formula section.

Original entry on oeis.org

1, 3, 1, 5, 4, 2, 9, 12, 10, 3, 15, 29, 33, 19, 5, 25, 64, 93, 77, 37, 8, 41, 132, 234, 251, 171, 69, 13, 67, 261, 548, 719, 629, 362, 127, 21, 109, 500, 1216, 1884, 2004, 1482, 742, 230, 34, 177, 936, 2592, 4628, 5784, 5196, 3342, 1482, 412, 55, 287
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2012

Keywords

Comments

Column 1: A001595
Row n ends with F(n), where F=A000045, the Fibonacci numbers.
Row sums: 1,4,11,34,101,304,911,2734,... A060925
Alternating row sums: 1,2,3,4,5,6,7,.... A000027
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
3....1
5....4....2
9....12...10...3
15...29...33...19...5
First three polynomials v(n,x): 1, 3 + x , 5 + 4x + 2x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209769 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209770 *)

Formula

u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.