A209773 Triangle of coefficients of polynomials u(n,x) jointly generated with A209774; see the Formula section.
1, 1, 2, 2, 6, 5, 2, 11, 21, 13, 3, 17, 48, 67, 34, 3, 25, 92, 188, 206, 89, 4, 33, 154, 422, 684, 619, 233, 4, 44, 238, 809, 1756, 2365, 1829, 610, 5, 54, 348, 1411, 3801, 6833, 7882, 5334, 1597, 5, 68, 484, 2285, 7369, 16471, 25302, 25549, 15393
Offset: 1
Examples
First five rows: 1 1...2 2...6....5 2...11...21...13 3...17...48...67...34 First three polynomials u(n,x): 1, 1 + 2x, 2 + 6x + 5x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209773 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209774 *)
Formula
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments